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Abstract

Unfamiliar accents can pose a challenge to speech recognition.
However, listeners often adapt quickly to novel accents, and
even generalize this adaptation across talkers with the same
accent. We investigate how such cross-talker generalization—
critical to effective speech perception—is achieved. We take
advantage of advances in automatic speech recognition to test
whether comparatively simple similarity-based inferences can
explain cross-talker generalization in human listeners. We use
the latent perceptual space learned by the HuBERT model—
shaped by the statistics of the speech signal and the objective to
recognize speech—to meaningfully measure the similarity be-
tween talkers’ pronunciation. We find that word-level similar-
ity in this latent space predict listeners’ ability to successfully
generalize across talkers. We discuss consequences for theo-
ries of adaptive speech perception. In particular, our results
explain why cross-talker variability is not a prerequisite for
cross-talker generalization (contrary to influential accounts).

Keywords: speech perception; cross-talker generalization;
similarity-based inference; automatic speech recognition

Introduction

Talkers’ speech is shaped by their physiology, social identity,
and language background. These factors result in pronun-
ciation variability at both the level of individual talkers (id-
iolects) and groups of talkers (second language/L.2 accents,
regional dialects, and sociolects). In theory, this variability
in the mapping from acoustics to sound categories, words,
and meaning might pose a formidable computational chal-
lenge for speech recognition. However, humans are remark-
ably skilled at adapting to cross-talker variability, including
the generalization of unfamiliar speech patterns across talk-
ers (for review, Bent & Baese-Berk, 2021).

Such cross-talker generalization is critical for effective
speech recognition, especially when faced with unfamiliar
accents. Yet, the mechanisms that afford cross-talker gener-
alization remain largely unknown. An influential early ac-
count focused on the role of variability (Bradlow & Bent,
2008): exposure to cross-talker variability was hypothesized
to be necessary for generalization, allowing listeners to dis-
tinguish accent- from talker-level variability. Support for this
hypothesis came from studies that found successful general-
ization only after exposure to multiple talkers (ibid, Baese-
Berk, Bradlow, & Wright, 2013). The idea that variability
during exposure/training is inherently beneficial has since in-
fluenced research on speech perception and beyond, includ-
ing fields ranging from pedagogy to rehabilitation therapy.

More recent studies, however, suggest a need to revisit
this idea (Bradlow, Bassard, & Paller, 2023; Xie & Myers,
2017; Xie, Liu, & Jaeger, 2021). These studies find cross-
talker generalization even after exposure to a single talker,
and even when that exposure is rather short—as few as 16
sentence recordings. Based on these findings, Xie et al.
(2021) proposed an alternative, similarity-based, account: if
listeners (1) maintain information about recently experienced
speech input and (2) use this information to categorize subse-
quent speech input (as hypothesized in most modern theories
of speech perception), successful cross-talker generalization
should depend on the cross-talker similarity in the percep-
tual space(s) relevant to speech representations (phonemes,
syllables, or words). Under this alternative account, variabil-
ity does not necessarily facilitate generalization. Instead, po-
tential benefits of variability during exposure are mediated,
resulting from an increased probability that exposure carries
relevant information about test.

A number of studies have now provided evidence for the
type of similarity-based generalization proposed in Xie et al.
(2021). For instance, generalization from one talker with
an unfamiliar accent to another talker with the same accent
seems to depend on the similarity of those talkers’ phonetic
distributions (Alexander & Nygaard, 2019; Xie & Myers,
2017; see also Kraljic & Samuel, 2007; Reinisch & Holt,
2014). However, existing tests of the similarity-based hy-
pothesis have relied on largely qualitative comparisons. And
the few studies that have carefully evaluated phonetic char-
acteristics have focused on a small number of phonetic cues
and contrasts (e.g., three cues to final stop voicing in Xie &
Myers, 2017; F1-F2 and duration for some vowel contrasts
in Alexander & Nygaard, 2019). None of these studies quan-
tified similarity, and assessed whether the similarity between
the speech during exposure and test can predict listeners’ abil-
ity to generalize from exposure to test. These studies thus also
leave open whether similarity-based inferences can explain a
non-trivial share of cross-talker generalization.

To the best of our knowledge, only two previous studies
have attempted to quantify how similarity between exposure
and test recordings affects generalization. Perhaps surpris-
ingly, neither of these studies found convincing evidence for
similarity-based generalization. Key to understanding the
reasons for the mixed results of previous work is, we submit,
that neither study actually measured whether the exposure



and test recordings were similar in the relevant way—i.e.,
in the mapping from acoustics onto speech categories. For
instance, Xie et al. (2021) found that the subjective similar-
ity of exposure and test talkers—estimated through a separate
norming study—was weakly predictive of listeners’ ability to
generalize exposure benefits to test. However, as discussed by
Xie et al, subjective similarity ratings can be strongly affected
by holistic similarities in talkers’ voice quality (e.g., speech
rate, pitch, vocal fry), which are not necessarily informative
about how talkers’ accents affect the mapping from acoustics
to speech categories in their study (we describe this study in
more detail below). Bradlow et al. (2023) instead used five
acoustic features (speech rate, pitch, vowel dispersion, etc.)
to estimate talker-to-talker similarity in the acoustic signal.
Estimated this way, similarity was not predictive of general-
ization. Critically, this approach, too, does not capture how
acoustic features map onto speech categories.

Here, we begin to address this issue. We take advantage of
advances in automatic speech recognition (ASR) to estimate
how much helpful information a set of exposure recordings
contains about subsequent test recordings. We apply this ap-
proach to the data from Xie et al. (2021) and test whether
word-level similarity in the relevant perceptual space can ex-
plain cross-talker generalization of adaptation to natural L2
accents. The latent representations learned by the ASR model
we use are obtained through self-supervised learning and
fine-tuned to the objective of recognizing words. Such ASR
models might thus learn latent perceptual spaces, as well as
category representations in those spaces, that resemble those
learned by human listeners.

The pipeline we develop is inspired by recent applications
of ASR models to quantify how the relative ‘non-nativeness’
of second language (L2) speech affects its perception by na-
tive (L1) listeners (Chernyak, Bradlow, Keshet, & Goldrick,
2024; Kim, Chernyak, Keshet, Goldrick, & Bradlow, 2025).
Chernyak et al. compared sentence recordings of L2 talkers
to recordings of the same sentences by L1 talkers. As we de-
scribe in more detail below, this makes it possible to calculate
the distance of two recording in the latent space learned by an
ASR model. Chernyak and colleagues found that L1 listen-
ers’ accuracy in transcribing an L2 talker’s speech decreases,
the more distant an L2 talkers’ speech is, on average, from L1
speech (see also Kim et al., 2025).

We use the approach developed by Chernyak, Kim, and
colleagues to test whether similarity-based inference can ex-
plain cross-talker generalization after exposure to L2 speech.
Compared to the overall intelligibility of L2 talkers by L1
talkers—the question addressed by Chernyak, Kim, and
colleagues—the effects of recent exposure on subsequent
generalization that we seek to understand are substantially
more subtle (smaller effects). We thus extend the ap-
proach pioneered by Chernyak, Kim, and colleagues in a few
ways. First, we do not assume the relevant perceptual dis-
tances are necessarily Euclidean. Second, we use percep-
tual similarity—an exponential function of distance—rather

than distance to predict human behavior. We also improve
the statistical analyses in Chernyak et al., 2024 in two ways.
First, we use word-level, rather than talker-level, similarity
to model word-level recognition accuracy, rather than talker-
level intelligibility. Second, we use mixed-effect logistic,
rather than Beta, regression to account for the amount of in-
formation available from participants.

Study 1 sets all parameters of our exemplar model to rea-
sonable defaults established in previous work (Apfelbaum &
McMurray, 2015), though we note that these previous uses of
exemplar models (i) employed a small number of handpicked
phonetic features—unlike the high-dimensional latent space
learned by modern ASR models—and (ii) tested exemplar
models against categorization tasks over isolated segments,
syllables, or nonce-words—rather than the full complexity of
word recognition within a sentence context. In Study 2, we
instead optimize the exemplar model’s parameters against the
data from Xie and colleagues, and begin to assess whether
different layers of the ASR model’s DNN architecture differ
in how predictive they are about human behavior.

Methods

Next, we describe the data we used to test whether similarity-
based inferences can explain cross-talker generalization.
Then we describe our ASR-based approach, and how we used
it to estimate the similarity of the exposure and test record-
ings. This measure can be seen as a (coarse-grained) approx-
imation of the amount of information that exposure provides
about the speech patterns encountered during test. Finally,
we describe how we tested whether the similarity between
the exposure and test recordings predicts listeners’ ability to
generalize from exposure to test.

Data

We used Experiment la from Xie et al. (2021, henceforth
X21). X21 is a large-scale replication (N=320 participants) of
a classic study on the perception of L2-accented English by
L1-English listeners (Bradlow & Bent, 2008). During test, all
groups of participants transcribed 16 short sentence record-
ings from a single Mandarin-accented talker. Transcription
accuracy was assessed for 3-4 keywords per sentence, yield-
ing 51-52 scored keywords per participant (e.g., “boy”, “fell”,
“window” for the sentence “the boy fell from the window”).

During a preceding exposure phase, participants tran-
scribed 80 different, but similarly short, sentence recordings.
Depending on the exposure group that the participant was
randomly assigned to, exposure recordings consisted of the
same 16 sentences each from five different L1 talkers (control
exposure), the same sentences from five L2 talkers different
than the test talker (multi-talker), five repetitions of the same
recordings from one L2 talker different from the test talker
(single-talker), or five repetitions of the same recordings from
the same talker as during test (talker-specific). Participants’
transcription accuracy during test thus measured how well
they were able to generalize from exposure to test.



The X21 data are particularly suitable for the present pur-
pose because they contained a comparatively large number of
exposure-test combinations. Specifically, Xie et al repeated
the design described above for four different L2-accented test
talkers. This resulted in 32 unique combinations of expo-
sure and test talkers: four combinations of exposure- and test-
talker for the control, multi-talker, and talker-specific condi-
tions, and 20 variants of the single-talker conditions. Addi-
tionally, the design counterbalanced which of two sets of 16
sentences were used during during test, resulting in 64 combi-
nations of exposure and test recordings. With 51-52 keywords
per test, the data contain a total of 3296 unique combinations
of (i) exposure talkers, (ii) test talker, and (iii) test keyword.
For each combination, X21 includes the number of times par-
ticipants transcribed the keyword correctly/incorrectly.

Estimating exposure-to-test perceptual similarity

Figure 1 describes how we estimated the perceptual similar-
ity between exposure and test talkers for each of the 3296
combinations. We decided to estimate word-level similari-
ties for the present study. In contrast to sentence-level sim-
ilarities, this takes advantage of the fact that X21 contains
keyword-level human transcription accuracies, while avoid-
ing the challenges associated with segment-level similarities
(e.g., the need for segment-aligned transcripts, not included in
X21). Specifically, we estimated the similarity of each key-
word recording during test to the recordings of the same word
by the exposure talkers. This introduces an assumption since
listeners actually never heard the same keywords or sentences
during exposure and test (see above): we assume that expo-
sure recordings were sufficiently informative about exposure
talkers’ pronunciation to let listeners estimate how the expo-
sure talker(s) would have pronounced the test keyword.!

Defining a Latent Perceptual Space To quantify word-
level similarities between exposure and test talkers, we need
to project the sentence recordings from those talkers into
a latent perceptual space. This space needs to capture the
acoustic dimensions relevant to speech recognition while still
maintaining fine-grained acoustic differences between talk-
ers. We used a self-supervised learning (SSL) ASR model
to achieve this goal, specifically HuBERT-Large with fine-
tuning for word recognition (Hsu et al., 2021). HuBERT is
trained on English input (containing mostly L1 English).
Like similar mainstream SSL-ASR models, HuBERT-
Large consists of two network blocks: an encoder network
and a context network. The encoder network, also known as
the feature extractor, is composed of a seven-layer convolu-
tional neural network (CNN), while the context network con-

"'While the use of segment-level similarities would have ame-
liorated the need for this assumption, it would not have removed
it: even many of the segments experienced during test did not oc-
cur during exposure (especially, if nphones are considered, which
is necessary to capture the often substantial effects of surrounding
phonological context on segment realization). Ultimately, a feature-
based approach might be most promising, which, however, comes
with its own challenges that we hope to address in future work.

a) Audio sample: “A bov fell from the window” b)  Keyword cut: “A boy fell from the window”
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Figure 1: Approach. a) Projecting speech recordings into la-
tent perceptual space. b) Calculating word-level similarities.

sists of 24 bidirectional Transformer layers. For Study 1, we
adopted the 512-dimensional output of the encoder network
(the 7th layer of the CNN) as the perceptual space represen-
tation. In Study 2, we consider alternative approaches.

HuBERT is initially trained to learn audio features (latent
clusters in the acoustic signal) from MFCCs inputs (which
mimic the human auditory system’s increased sensitivity
to differences between low acoustic frequencies, compared
to differences between high frequencies). Using masked-
prediction, HuBERT then is trained in a self-supervised fash-
ion to learn latent structure in the speech signal. After train-
ing, the HuBERT-Large that we used was fine-tuned against
the objective of speech recognition (Hsu et al., 2021).

Word-level perceptual similarities Our approach closely
followed Chernyak et al. (2024), but at the word-, rater than
sentence-level. We used z-distributed stochastic neighbor em-
bedding (t-SNE, van der Maaten & Hinton, 2008) to reduce
the dimensionality of HuBERT’s perceptual space, and thus
the complexity for subsequent computations (e.g., from 512
to 3 latent dimensions for each time window ¢ of 20ms length;
see left side of Figure 1). Specifically, we applied t-SNE to
the combined 352 sentence recordings of the 5 L1-accented
and 6 L2-accented talkers in X21. We then used manually
annotated word boundaries (contained in X21) to extract the
trajectories through the t-SNE space for each test keyword.
Due to differences in speechrate and pronunciation, the length
of this trajectory—and the mapping of each of its 20ms time
windows onto the word’s phonological segments—can dif-
fer between recordings. We thus used dynamic time warping
(DTW) to align recordings of the same word by two different
talkers, yielding two aligned trajectories (matrices with three
rows and n columns; see Figure 2).

Finally, we calculated the perceptual similarity for each
pair of aligned trajectories of the same word by two talkers
(right side of Figure 1). We follow Apfelbaum and McMurray
(2015), and define the distance between two feature vectors
in perceptual space as:
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Figure 2: Time-aligned trajectory of two talkers’ pronuncia-
tion of the sentence “A boy fell from the window” in the 3D t-
SNE-derived projection of the 512-dimensional latent space.
Highlighted is the word “fell”, for which the L1- (blue) and
L2-talker (red) differ strongly in their realization of /f/. Each
point represents a 20ms time step.
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where v, ; is the value of feature vector i in dimension m.
For Study 1, we set all feature weights w,, =1 and T =2 to
obtain Euclidean distances. Using this distance metric, we
define the distance between two word recordings w, and w,
as the minimal distance between their trajectories in the t-
SNE space that can be found by DTW:

D(w,,wy) = min Z dist(S(f(wy)i,S(f(wy));) (@)

TP (i) fen

where T is the alignment path, and 2 is the set of all pos-
sible alignments between the trajectories, f extracts the rep-
resentation in latent layer of the ASR model, and S applies
t-SNE. This yields the normalized word-level similarity be-
tween the two recordings (again following Apfelbaum & Mc-
Murray, 2015), ranging from O to 1:

—D(wy, wy)k )
ITcmin|
where |Ty,| is the length of the best path resulting from
DTW, and k determines how much quickly similarity de-
creases with distance in the latent perceptual space. For Study
1, we set and k = 1. In Study 2, we explore alternatives.
Figure 3 summarizes the median word-level similarities be-
tween all pairs of talkers in our data, using the approach de-
scribed for Study 1. This shows that word-level similarities

3)

similaritywmwy =exp (

were, on average, highest between pairs of L1 talkers (top-
left red square) and lowest between pairs of L1 and L2 talkers
(pairs not contained in either red square). This qualitatively
aligns with the results in Xie et al. (2021), where transcription
accuracy during test was highest in the talker-specific condi-
tion, followed by the multi- and single-talker conditions, and
finally the control condition with native exposure.
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Figure 3: Median word-level similarities between the 11 talk-
ers in X21. Shown for Study 1, using perceptual representa-
tions from the final CNN layer of HuBERT-Large, with all
wn =1,T=2, k= 1. Top red square indicates five L1 talk-
ers; bottom square indicates six L2 talkers.

Exposure-to-test word-level similarity One further aggre-
gation step is necessary totest whether the derived word-level
similarities are predictive of listeners’ ability to generalize
from exposure to test. Both the control and the multi-talker
exposure contained five talkers. For Study 1, we calculated
the similarity between exposure and test for each keyword as
the maximum word-level similarity across the five exposure
talkers. In Study 2, we explore alternatives.

Figure 4 illustrates the resulting distribution of word-level
similarities in Study 1 for one of the four test talkers. Unsur-
prisingly, there is substantial variability between keywords
(crossing lines). This highlights that one cannot safely con-
clude from the ordering of a exposure-test talker combina-
tion’s mean similarity whether the derived word-level sim-
ilarities can qualitatively predict human perception in X21.
This motivates our analysis approach, presented next.

Predicting human perception from similarity

To test whether the 3,296 word-level similarity estimates de-
rived from our ASR-based approach are predictive of human
perception, we used mixed-effects logistic regression (glmer
in R package 1me4). Specifically, we regressed how often
human participants transcribed a keyword correctly or incor-
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Figure 4: Distribution of word-level similarities in Study 1
between exposure talkers and one of the four test talkers.
Point ranges shows medians and their 95% bootstrapped CI
over all keywords, violins show density of those word-levle
similarities. Thin lines illustrate grouped structure of the data
for 15 randomly selected keywords. Per our approach, simi-
larity = 1 in the talker-specific condition(see Discussion).

rectly during test against the keyword’s exposure-to-test sim-
ilarity. To avoid Type I error inflation, we included random
intercepts by keyword (nested under sentence) and by test
talker. This approach accounts for the amount of information
available about each keyword’s average transcription accu-
racy, while also accounting for the data’s repeated-measures
structure. Additional control analyses are described below.

Study 1

When all 3,296 word-level similarity values were included in
the model, similarity was a highly significant positive predic-
tor of human transcription accuracy (B =0.8,z=10.06, p <
.0001). This result held when talker-specific observations—
for which word-level similarities were always 1—were re-
moved from the data, though the effect of similarity was much
reduced (= 1.08, z=4.3, p < .0001).

Critically, similarity continued to have significant posi-
tive effect in a second regression analysis (w/ talker-specific
data: B =1.13, z=4.0, p < .0001; w/o: p=1.35, z=
4.6, p < .0001), when we added exposure condition to the
regression—the only predictor used in previous studies (Xie
et al., 2021). This shows that variation in exposure-to-test
similarity explains variation in listeners’ behavior beyond that
accounted for by exposure condition. The fact that the ef-
fect of similarity was reduced when condition is included in
the analysis (smaller z-value) suggests that differences in the
average exposure-to-test similarity between conditions con-
tribute to the overall effect of similarity. Finally, similarity
did not account for all of the effect of condition (adding con-
dition improved the fit of the model (w/ talker-specific data:
x%(3) = 65.4, p < .0001; w/o: x*(2) = 65.9, p < .0001).

Study 2

To assess the robustness of our findings, Study 2 repeated the
analysis from Study 1, while varying degrees of freedom in
the computational architecture. Specifically, we considered:

e The ASR layer used to calculate word-level perceptual
similarity: the final CNN layer (as in Study 1) or the final
Transformer layer

* The aggregation function for word-level similarities in
conditions with multiple exposure talkers (control, multi-
talker): the maximum (as in Study 1) or mean similarity of
any exposure talker for that keyword and test talker.

¢ The distance metric: T € (.5,1,2,4,8). T =1 is most ap-
propriate for clearly separable feature dimensions, whereas
T =2 (assumed in Chernyak et al., 2024; Kim et al., 2025)
is effective when this is not the case.

For each of these combinations, we used BFGS optimiza-
tion to find the scaling parameter k that best fit listeners’ re-
sponses (using the first GLMM described in Study 1, with
similarity as the only fixed effect, plus random effects).

Table 1 summarizes the results. In all cases, similarity had
a highly significant positive effect on listeners’ transcription
accuracy during test. This effect was strongest (largest z-
value; lowest model BIC), when the latent space of the final
Transformer layer was used to obtain perceptual representa-
tions, with little effect of the aggregation function (the same
held when the talker-specific data is excluded; not shown).

Network Sim. T | best Sim. BIC
layer aggregation k z-value
CNN mean 51010 | 10.27 | 6930
CNN max 51020 | 10.08 | 6934
Transformer mean 4 1191 | 13.33 | 6859
Transformer max 4 1339 | 13.33 | 6862

Table 1: Results of Study 2. Final two columns show how
predictive similarity estimates were of listeners’ accuracy.
Since T had little effect on fit (z-values differences < .1), we
show results for only the best-fitting T for each layer and ag-
gregation function.

For the best-fitting combination of layer (transformer layer
24), aggregate function (mean), T (4) and k (1.91), we also fit
a mixed-effects logistic regression with similarity and expo-
sure condition. This analysis replicated the finding of Study
1 that similarity explains variability in listeners’ transcription
accuracy both within and between exposure conditions, but
does not explain all variability between conditions (compar-
ison against regression with just condition: x*(1) = 117.4,
p < .001); against regression with just similarity: x?(3) =
94.4, p < .001). This is visualized in Figure 5: participants
in the control condition had reliably lower accuracy during



test than expected based on the ASR-derived word-level sim-
ilarities (gray line below all other lines). One potential rea-
son for this—to be tested in future research—is that control
participants experience the most striking change in speech
styles from L1 exposure to L2 test, which can create addi-
tional processing difficulty (for review, Magnuson, Nusbaum,
Akahane-Yamada, & Saltzman, 2021).

Control Multi-talker mmm Single talker Talker-specific
Test Talker: CMN_M_037

1.0 1
T o9
3 o
£
- 08
2
o
g
}‘; 0.7
=
o
> 0.6
o
c
3
S 05
©
.
2
S 044
et
%]
2

0.3 1

0.2 T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Exposure-to-test talker-similarity of keyword

Test Talker: CMN_M_035 Test Talker: CMN_M_032 Test Talker: CMN_M_043

sl

Figure 5: Word-level similarity between exposure and test is
a significant predictor of listeners’ transcription accuracy dur-
ing test. Panels show the four test talkers. Lines show fit of
ordinary logistic regression fit separately to each combination
of exposure condition and test talker. Points show listeners’
accuracy for individual words (size indicates number of par-
ticipant responses for that word).

Discussion

The perceptual similarity of speech inputs to previously ex-
perienced speech has long been hypothesized to be critical to
speech perception (Goldinger, 1998; Johnson, 1997; Klein-
schmidt & Jaeger, 2015). Here we set out to test whether
similarity between talkers’ realization of speech categories is
predictive of cross-talker generalization after exposure to L2-
accented speech, as hypothesized in Xie et al. (2021). Our re-
sults support this hypothesis. This explains why multi-talker
exposure is not necessary for cross-talker generalization. It
also suggests that it is time to rethink why variability dur-
ing exposure can be helpful for generalization: not because it
is inherently helpful, but primarily because it increases the
probability that exposure inputs are similar in the relevant
ways to those that listeners are later tested on.

To be able to estimate word-level similarity in talkers’ pro-
nunciation of speech categories, we drew on advances in
ASR. We build on recent work that has used ASR-derived
perceptual spaces to investigate speech perception (Chernyak
et al., 2024; Kim et al.,, 2025). These pioneering works
found that an L2 talker’s similarity to L1 (native) pronun-
ciations in an ASR-derived perceptual space predicts how
a priori intelligible the L2 talker’s speech is for L1 listen-
ers. Here, we extended the approach developed in those
works approach to ask whether exposure-driven changes
in perception—including cross-talker generalization—can be
explained by similarity-based inferences.

Even under simplifying assumptions that arguably bias
against the hypothesis (see below), we found that similarity-
based inferences predict a substantial amount of variability
in cross-talker generalization. To the best of our knowledge,
this is the first time this has been demonstrated for an uncon-
strained task like transcription that begins to resemble the de-
mands and affordances of everyday speech perception. To the
best of our knowledge, this constitutes the first direct demon-
stration that similarity-based inferences can predict a substan-
tial amount of variability in cross-talker generalization.

Finally, our findings have potential implications for ASR
system design. By leveraging insights into human perceptual
generalization, future ASR systems could incorporate train-
ing regimens that mimic diverse exposure conditions, enhanc-
ing their robustness to speaker variability.

Methodological Considerations and Limitations

Our approach relies heavily on ASR-derived features. This
might introduce biases based on the limitations of the under-
lying ASR model. For example, HuBERT ensures preserva-
tion of acoustic characteristics, but it does not fully account
for higher-level contextual dependencies that might influence
human perception. Future work could explore the integration
acoustic features with contextual embeddings to better cap-
ture the range of human speech processing capabilities.
Similarly, our current architecture does not model how
listeners’ representations might change dynamically during
exposure, as listener integrate the exposure exemplars into
representations derived from previous speech input. This
integration process is expected to depend, for instance, on
whether a listener actually was able to correctly recognize
the speech input during exposure (and thus ‘label’ the expo-
sure exemplar). Future work might address this limitation by
modeling which phones (or context-sensitive variants, such
as diphones) listeners recognized during exposure. This will
also address another limitation of the present approach, which
relies on word-level representations. Words never were re-
peated between exposure and test in X21. The use of word-
level similarities between talkers thus assumes that listeners
somehow extract the relevant phonetic properties from the ex-
posure speech that are necessary to generalize to the words
encountered during test. While this assumption strikes us
as plausible, future work will benefit from an approach that
models listeners’ generalization process more directly.
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