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Abstract. The human brain, with its intricate network of neurons and synapses,
remains one of the most complex systems to understand and model. The study
presents a groundbreaking approach to understanding complex neural networks
by introducing a dynamic fitting method for hybrid time-delayed and uncertain
internally-coupled complex networks. Specifically, the research focuses on in-
tegrating a Neural Mass Model (NMM) called Jansen-Rit Model (JRM) with
the Kuramoto model, by utilizing real human brain structural data from Diffu-
sion Tensor Imaging (DTI), as well as functional data from Electroencephalog-
raphy (EEG) and Magnetic Resonance Imaging (MRI), the study extends above
two models into a more comprehensive brain-like model. This innovative mul-
timodal model enables the simultaneous observation of frequency variations,
synchronization states, and simulated electrophysiological activities, even in the
presence of internal coupling and time delays. A parallel fast heuristics algo-
rithm serves as the global optimization method, facilitating rapid convergence
to a stable state that closely approximates real human brain dynamics. The find-
ings offer a robust computational tool for neuroscience research, with the poten-
tial to simulate and understand a wide array of neurological conditions and cog-
nitive states. This research not only advances our understanding of complex
neural dynamics but also opens up exciting possibilities for future interdiscipli-
nary studies by further refine or expand upon the current model.

Keywords: Complex Networks, Computational Neuroscience, Dynamic model
fitting, Neural Mass Model, Kuramoto Model.

1 Introduction

The human brain stands as an intricate and dynamic network, comprised of billions of
neurons interconnected by trillions of synapses. These neural components engage in
complex electrochemical signaling mechanisms, orchestrating a symphony of interac-
tions. This colossal and labyrinthine architecture is not merely responsible for rudi-
mentary physiological functions such as respiration and cardiac rhythm; it also under-
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pins advanced cognitive activities including memory, emotion, decision-making, and
creative thought[1]. Consequently, the human brain can be conceptualized as a multi-
layered, multi-scaled, and highly adaptive complex system. Its operational intricacies
continue to pose some of the most formidable challenges in disciplines ranging from
neuroscience to computational science [2].

Owing to the brain's staggering complexity and dynamic nature, scientists have been
in relentless pursuit of effective models and methodologies to delineate and compre-
hend its operational mechanics. Among these, the Neural Mass Model (NMM) offers
a valuable framework for investigating brain dynamics at macroscopic or mesoscopic
scales [3]. This model simplifies the intricate web of interacting neurons into one or
multiple 'neural masses,' thereby rendering the analysis of complex brain networks
more tractable [4]. The NMM is particularly germane to the interpretation of neu-
roimaging data such as Electroencephalography (EEG) and Functional Magnetic Res-
onance Imaging (fMRI), as these modalities typically capture the collective activity of
neuronal assemblies rather than the behavior of individual neurons [5]. Utilizing the
Neural Mass Model enables researchers to gain deeper insights into fundamental
characteristics of brain network dynamics, such as synchronization, rhythm genera-
tion, and information propagation [6]. However, it is worth noting that the model's
reductive nature may limit its capacity to capture more nuanced neural activities or
intricate network structures [7].

Concurrently, another pivotal framework for understanding brain network interactions
is encapsulated in the concept of "Communication through Coherence" (CTC) [8]. In
contrast to the Neural Mass Model, which primarily focuses on macroscopic electrical
activities, CTC emphasizes the mechanisms by which neurons or neural masses
achieve effective information transfer through coherent oscillatory activities [9].
Within this paradigm, coherent neural oscillations are posited as a conduit through
which distantly located neural masses can transiently "lock" into specific phase rela-
tionships, thereby facilitating efficient information exchange. This coherence is not
confined to oscillations at identical frequencies but can manifest across different fre-
quency bands, engendering so-called "nested" oscillations. Such a multi-layered struc-
ture of coherence furnishes the brain with a flexible and efficient communication
platform, enabling self-organization and adaptability across varying cognitive and
behavioral states. Thus, CTC and the Neural Mass Model can be viewed as comple-
mentary tools, collectively illuminating the multifaceted dynamics of complex brain
networks [10].

Worthy of mention in the same breath as models that describe coherence is the Ku-
ramoto model, a mathematical construct frequently employed to describe the syn-
chronization of large networks of oscillators [11]. This model employs a set of suc-
cinct differential equations to simulate the phase dynamics of oscillators, such as neu-
rons or neural masses, thereby capturing synchronization phenomena within complex
networks [12]. Numerous studies based on the Kuramoto model have ventured into
exploring interactions between different brain regions and how these interactions



influence or reflect various cognitive states and functions [13, 14]. In synergy with
CTC and the Neural Mass Model, the Kuramoto model offers a quantitative approach
to assessing brain network coherence, particularly when considering network topolo-
gy and oscillator interactions.

In the present study, we propose to integrate structural data extracted from real human
brains, such as Diffusion Tensor Imaging (DTI), along with individual information
data like Electroencephalography (EEG) and Magnetic Resonance Imaging (MRI),
into the Neural Mass Model. This integration extends the model into a comprehensive
Brain Mass Model (BMM) that accentuates its capacity to represent biophysical and
physiological characteristics. The Jansen-Rit model is selected as the Neural Mass
Model template to be applied on real human brain data, offering a mesoscopic de-
scription of physiological signals from neural clusters, as well as capturing influences
from pathological conditions, pharmacological interventions, and external stimuli.

Furthermore, we employ the same real human brain structural data to augment the
Kuramoto model, aligning its architecture with that of the BMM. This enables oscilla-
tor alignment at the network node level. We then attempt dynamic fitting of the ex-
tended Jansen-Rit model using the Kuramoto model, thereby facilitating simultaneous
observation of mesoscopic electrophysiological signals and regional brain synchroni-
zation. In essence, this research enables multi-attribute observation of network states
through dynamic fitting of complex systems, paving the way for simulating oscillato-
ry coherence in the neural system following rhythmic or state changes. Given that
both systems are mathematically expressed through differential equations—with the
Kuramoto model outputting phase and the Jansen-Rit model outputting simulated
local field potentials—the fitting process necessitates higher-order parameters. Con-
sidering the high-dimensional and non-convex nature of the task, parallel fast heuris-
tics algorithms are chosen as the global optimization method.

Although the objective of this work is model fitting based on real data, it suffices to
demonstrate that dynamic fitting of complex network systems can be applied to any
potential models of the same category. It allows for the testing of multiple working
states and attributes of the architecture under specific thematic data, while also ena-
bling observation of structural changes in one model based on adjustments to the pa-
rameters of another. Lastly, we discuss the feasibility of applying this research to
simulate the dynamics under various potential oscillatory states within neural systems,
as well as the prospects for enhancing the accuracy and speed of the fitting process
through the expansion of our original system.



2 Method

2.1 Real Human Brain Data Structure

In the present study, the estimation of structural brain networks was based on Diffu-
sion Tensor Imaging (DTI) data, from Cabral’s (2014) research [15]. All magnetic
resonance scans were conducted on a 1.5 Tesla MRI scanner, utilizing a single-shot
echo-planar imaging sequence to achieve comprehensive brain coverage and capture
multiple non-linear diffusion gradient directions. To define the network nodes, the
brain was parcellated into 90 distinct regions, guided by the Automated Anatomical
Labeling (AAL) template [16]. Data preprocessing involved a series of corrections
using the Fdt toolbox in the FSL software package ([26], FMRIB), aimed at rectifying
image distortions induced by head motion and eddy currents. Probabilistic fiber track-
ing was executed using the probtrackx algorithm to estimate the fiber orientations
within each voxel. For connectivity analysis, probabilistic tractography sampling was
performed on fibers passing through each voxel [17]. This data served as the basis for
both voxel-level and region-level analyses. Connectivity between different brain re-
gions was ascertained by calculating the proportion of fibers traversing each region.

Ultimately, two 90x90 matrices, C;; and D;;, were generated (see Fig. 1). C;; charac-
terizes the connectivity and strength of connections between brain regions, whereas
D;j represents the communicative distance between them. To normalize these matri-
ces, all off-diagonal elements were divided by their mean value, setting the mean to
one. D;; was also subjected to normalization to adapt to a discrete-time framework.
This was accomplished by dividing D by the mean of all values greater than zero in
the C matrix, followed by scaling through a simulated unit time and subsequent inte-
ger rounding for direct matrix indexing. (Estimation is carried out based on the Eu-
clidean distance between the centroids of the segmented regions.[15])

2.2 Extended Neural Mass Model with Coupling Strength and Time Delay

Neural Mass Models (NMMs) serve as mesoscopic mathematical frameworks de-
signed to capture the dynamic behavior of brain regions or neuronal assemblies. Un-
like models that simulate the activity of individual neurons, NMMs aim to understand
the integrated behavior of neural systems at a higher level of abstraction [3, 4, 5].
They typically employ a set of differential equations to describe the interactions be-
tween different types of neuronal populations, such as excitatory and inhibitory neu-
rons, and their responses to external inputs. These models have found extensive appli-
cations in the analysis of neuroimaging data, including Electroencephalography
(EEG) and Functional Magnetic Resonance Imaging (fMRI), as well as in simulating
the dynamic expressions of neurological disorders like epilepsy and Parkinson's dis-
ease [18].
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Fig. 1. Description of the real human brain structural template. (a) Indicates the brain region
location corresponding to each node. (b) and (c) describe the coupling strength between brain
regions, while (d) and (e) describe the time delays between them. (f) describes the virtual ana-
tomical structure of the brain network model, as well as how each node is represented as either
a Jansen-Rit model or a Kuramoto model.

One notable instantiation of NMMs is the Jansen-Rit Model (JRM), which has been
frequently employed in past research to characterize specific large-scale brain rhyth-
mic activities, such as Delta (1-4 Hz), Theta (4-8 Hz), and Alpha (8-12 Hz) waves.
The JRM typically comprises three interconnected subsystems that represent pyrami-
dal neurons, inhibitory interneurons, and excitatory interneurons. These subsystems
are linked through a set of fixed connection weights and can receive one or multiple
external inputs, often modeled as Gaussian white noise or specific stimulus signals. In
previous research, the basic Jansen-Rit model has been extensively described, includ-
ing structure, equations and parameter settings [19]. The JRM employs a set of non-
linear differential equations to describe the temporal evolution of the average mem-



brane potentials within each subsystem, their interactions, and their responses to ex-
ternal inputs.

In the present study, we extend the foundational single JRM to a network-level sys-
tem comprising multiple JRMs. Each node in this network communicates based on
the AAL brain structure data described in Section 2.1, and a more vivid depiction can
be found in Fig 1. Given that local circuits are now expanded into large-scale, brain-
like network circuits, nodes need to receive signals emitted from other nodes. This
inter-node communication is governed by a parameter K;;, which reflects the connec-
tivity across areas. Additionally, considering the influence of inter-regional distances
on signal transmission, the signals between nodes are also modulated by a parameter
T;j, which represents the unit time required for a signal to reach a designated node.
As a result, we can extend the original equations to accommodate these additional
factors.
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2.3  Extended Kuramoto Model with Coupling Strength and Time Delay

The Kuramoto model serves as a mathematical framework for describing the collec-
tive behavior of coupled oscillators. Proposed by Yoshiki Kuramoto in 1975, the
model aims to capture the spontaneous synchronization phenomena observed in
groups of coupled oscillators [11]. In its basic form, the Kuramoto model describes N
phase oscillators through the following set of ordinary differential equations:

. K~V
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Here, 6 represents the phase of the oscillators, w; denotes the natural frequency of
the i*" oscillator, N is the total number of oscillators, and K signifies the coupling
strength between the oscillators. When the value of K is sufficiently low, it implies
that the oscillators within the subsystem are in a weakly coupled state, operating more
or less independently. As K increases and reaches a critical value K, , the oscillators
begin to exhibit synchronization. The coherence or order parameter of the Kuramoto
model can be described using the following equation:
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In this equation, e’®/is a complex number with a modulus of 1. The value of r ranges
from 0 to 1, with values closer to 1 indicating a more synchronized system. To adapt
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the basic Kuramoto model to the current human brain network structure, the original
equations can be reformulated as follows:

N
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Given that the human brain network structure includes a matrix C; j representing the
connectivity between brain regions, the focus shifts to the influence between connect-
able network nodes. The global coupling parameter K is replaced by K;;, eliminating
the need for averaging. In this context, the emphasis is on detecting the coherence
between two specific oscillators i and j, which can be calculated using the following

equation within a time window T:

T
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By adapting the Kuramoto model in this specialized context, the focus is shifted to-
wards understanding the intricate relationships and synchronization phenomena be-
tween specific oscillators. This nuanced approach allows for the exploration of oscil-
lator behavior in a more localized manner, contrasting with broader network models.
It opens up avenues for investigating the subtleties of oscillator interactions, which
could be particularly useful in specialized applications beyond the scope of traditional
brain network models.

T =

2.4 Dynamic Fitting for two extended model

As delineated in the preceding sections, the objective of this study is to dynamically
fit the Jansen-Rit Model (JRM) and the Kuramoto model within the framework of the
AAL human brain network structure. This integration aims to create a multimodal
model that allows for the simultaneous observation of frequency variations, synchro-
nization states, and simulated electrophysiological activities. Given that the JRM
outputs time-varying electrical signals simulating membrane potentials, while the
Kuramoto model outputs the phases of oscillators, a direct fitting of the outputs is not
feasible. However, considering that both models yield time-varying signals, we can
elevate them to a common output dimension by transforming their time-domain out-
puts into the frequency domain to obtain Power Spectrum Density (PSD).

For continuous-time signals x(t), the PSD, S(f), can be computed through Fourier

Transform as follows:
2
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In our specific case, dealing with discrete signals, we employ a window with a range
equal to the maximum value of the delay matrix and calculate the PSD using the peri-
odogram method:

FFT(x[n] — %Z&lx[n])
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Here, FFT denotes the Fast Fourier Transform, and the input to the function is the
signal with its DC component removed. The modulus is then squared and normalized.



Our optimization strategy synergistically combines the inherent attributes of the mod-
els with the characteristics of their operational states, employing a segmented parame-
ter-fitting approach. Given the operational rules of the Kuramoto model, the natural
frequencies often have a significant influence in the system's initial state. Therefore,
during the fitting process, we use the difference between the x-axis mappings of the
peak PSD values of the two models as the initial loss. This initial loss serves as a
guiding metric until the PSD peaks of both models closely align in the frequency
domain. Subsequently, we proceed to the next phase of parameter adjustment. Given
the varying connectivity across nodes, the coupling strength will determine the overall
energy levels. Accordingly, the coupling strength K for each node is adjusted based
on the current PSD differences; in other words, the height of the peak dictates the
direction of K's development. In our practical implementation, considering that the
JRM operates under resting parameters and includes Gaussian white noise as input,
we have opted not to introduce specific stimuli to simulate conditions the human brain
might encounter. Therefore, we have not extended our segmented, multimodal param-
eter-fitting approach to include environment-sensitive adaptive state-switching, which
would automatically select the parameters to be fitted based on changes in network
states.

3 Results

In this investigation, an initial imperative step involved meticulous parameter optimi-
zation for the Jansen-Rit Model (JRM). Given the plethora of tunable parameters
inherent to the JRM and our aspiration to operate the model under a unified parameter
configuration, this optimization was quintessential. After exhaustive testing and cali-
bration, we ascertained optimal values for several pivotal parameters to engender
optimal outputs within the Alpha rhythm spectrum. Specifically, the Average Excita-
tory Synaptic Gain (A) was determined to be 3.25mV, the Average Inhibitory Synap-
tic Gain (B) was 22mV, the Average Synapse Number (C) was 135, and the Firing
Threshold (PSP or v0) was 5.52mV.

Moreover, we scrutinized overarching resolution parameters that influence the mod-
el's operation, including the Coupling Gain (G) =10 and Mean Velocity (v) = 25m/s.
As depicted in Fig 2, an optimal parameter configuration was identified to ensure the
output remains ensconced within the Alpha rhythm domain.



Extended Jansen-Rit Model output
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Fig. 2. Exploration of the system output for the Extended Jansen-Rit model. (a) Shows the
output of the JRM in 90 brain regions (extracted from a window of 250,000 to 400,000 time
units). (b) Displays the correlation maps between the underlying structural connectivity matrix
and the FC matrices extracted from all combinations of model parameters, for different fre-
quency bands [19]. (c) Presents the overall PSD (Power Spectral Density) of the model at this
stage.

Upon the foundation of these optimized parameters, the system was initialized and
executed, culminating in a stable output state as evidenced in the simulation results
(see Figure 3.). Since our Kuramoto model uses a consistent direction simulation, the
x-axis coordinate can be used to determine the current operating frequency of most
oscillators. Intriguingly, due to the intricate interplay of complex connections and
parameters, certain nodes exhibited conspicuously elevated frequencies compared to
others. Concurrently, a subset of relatively quiescent nodes manifested diminished
activity ranges, contrasting starkly with nodes subjected to copious stimulation. These
observations not only corroborate the model's heterogeneity and complexity but also
allude to the potential for further refinement through parameter scaling.

Subsequently, we embarked on dynamic fitting of the steady-state JRM using the
Kuramoto model. Astonishingly, the congruence between the two models, as gauged
through Power Spectrum Density (PSD), was attained expeditiously within just 80
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fitting segments. Initially, the natural frequencies of the Kuramoto model manifested
multiple peaks across a 5-100Hz range in the PSD. However, as the preliminary fit-
ting phase approached culmination, the Kuramoto model was observed to have transi-
tioned into a frequency operation phase that was substantially congruent with that of
the JRM. Specifically, after 70 fitting segments, the PSD curve closely approximated
the target state of the JRM, and the loss descent curve plateaued, indicating that the
system had reached a proximate operational state.
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Fig. 3. The fitting process of the Power Spectrum and the decline curve of the loss. (a) repre-
sents the parameter initialization stage, (b) marks the end of the first fitting stage, (c) indicates

when the fitting stage reaches a steady state, and (d) shows the loss curve which represent the
difference of two models’ PSD.

4 Discussion

This study delves into a method for dynamic fitting of multimodal complex systems,
aimed to dynamically fit the Jansen-Rit Model (JRM) and the Kuramoto model within
the framework of the Automated Anatomical Labeling (AAL) human brain network
structure. Our results indicate that the optimized parameters for the JRM were effec-
tive in simulating Alpha rhythms, and the Kuramoto model was able to rapidly adapt
to the JRM's steady-state output. Our findings corroborate previous studies that have
employed the JRM and Kuramoto models separately to understand brain dynamics
[15, 19]. However, our work extends the existing literature by integrating these two
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models, thereby offering a more comprehensive tool for understanding complex neu-
ral dynamics.

The successful integration of the JRM and Kuramoto models suggests that it is feasi-
ble to create a multimodal model for the simultaneous observation of frequency varia-
tions, synchronization states, and simulated electrophysiological activities. This could
pave the way for more nuanced models that can better capture the multifaceted nature
of brain dynamics. The ability to dynamically fitting has significant implications for
neuroscience research, potentially offering a robust computational tool for simulating
and understanding various neurological conditions or cognitive states. This could be
particularly beneficial for the development of targeted therapeutic interventions.

One salient limitation of our study resides in the utilization of standardized parameter
settings for the JRM, which may not fully encompass the extensive spectrum of neu-
ral dynamics. Future investigations could delve into the ramifications of parameter
variations. Moreover, our research did not incorporate specific stimuli to emulate
conditions that the human brain might encounter, leaving room for future exploration
in this domain. For instance, the introduction of simulations for conditions such as
epilepsy [21], Parkinson's disease [22], Attention Deficit Hyperactivity Disorder
(ADHD) [23], and cognitive function assessments [24] could be particularly enlight-
ening. On another front, achieving higher fidelity in model fitting remains an impera-
tive research objective. Given the rich output waveforms generated by the JRM, it
would be myopic to confine ourselves to standard Kuramoto oscillators. The incorpo-
ration of limiters within the oscillators emerges as a promising avenue worth explor-
ing. Alternatively, we could contemplate expanding each node into a fully connect-
ed—or otherwise interconnected—multi-oscillator Kuramoto sub-network, thereby
potentially enriching the system's output [25]. In this manner, the utilization of dual
complex systems to study specific neural activities becomes feasible. Not only does
this allow for the analysis of synchronization phenomena under such activities, but it
also enables a multi-faceted examination that could yield more comprehensive in-
sights.
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